Robust Belief Roadmap: Planning Under Intermittent Sensing
نویسندگان
چکیده
In this paper, we extend the recent body of work on planning under uncertainty to include the fact that sensors may not provide any measurement owing to misdetection. This is caused either by adverse environmental conditions that prevent the sensors from making measurements or by the fundamental limitations of the sensors. Examples include RF-based ranging devices that intermittently do not receive the signal from beacons because of obstacles; the misdetection of features by a camera system in detrimental lighting conditions; a LIDAR sensor that is pointed at a glass-based material such as a window, etc. The main contribution of this paper is twofold. We first show that it is possible to obtain an analytical bound on the performance of a state estimator under sensor misdetection occurring stochastically over time in the environment. We then show how this bound can be used in a sample-based path planning algorithm to produce a path that trades off accuracy and robustness. Computational results demonstrate the benefit of the approach and comparisons are made with the state of the art in path planning under state uncertainty. Keywords—Path planning, Belief space planning, Autonomous systems, Localization.
منابع مشابه
FIRM : Sampling - based feedback motion planning under motion uncertainty and imperfect
In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the optimal...
متن کاملFIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements
In this paper we present FIRM (Feedback-based Information RoadMap), a multi-query approach for planning under uncertainty, that is a belief-space variant of Probabilistic Roadmap Methods (PRMs). The crucial feature of FIRM is that the costs associated with the edges are independent of each other, and in this sense it is the first method that generates a graph in belief space that preserves the ...
متن کاملThe Belief Roadmap: Efficient Planning in Linear POMDPs by Factoring the Covariance
In this paper we address the problem of trajectory planning with imperfect state information. In many real-world domains, the position of a mobile agent cannot be known perfectly; instead, the agent maintains a probabilistic belief about its position. Planning in these domains requires computing the best trajectory through the space of possible beliefs. We show that planning in belief space can...
متن کاملRobust Navigation Execution by Planning in Belief Space
We consider robot navigation in environments given a known static map, but where dynamic obstacles of varying and unknown lifespans appear and disappear over time. We describe a roadmap-based formulation of the problem that takes the sensing and transition uncertainty into account, and an efficient online planner for this problem. The planner displays behaviors such as persistence and obstacle ...
متن کاملDynamic Feedback Linearization-based Belief Stabilization for Nonholonomic Motion Planning in Belief Space
In roadmap-based methods, such as the Probabilistic Roadmap Method (PRM) in deterministic environments or the Feedbackbased Information RoadMap (FIRM) in partially observable probabilistic environments, a stabilizing controller is needed to guarantee node reachability in state or belief space. In belief space, it has been shown that the belief-node reachability can be achieved using stationary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.7256 شماره
صفحات -
تاریخ انتشار 2013